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Abstract. Dryland ecosystems are globally important, yet state-of-the-art dynamic vegetation models often lack specific 

processess or parameterizations that are critical for accurately simulating dryland dynamics. These missing processes include 

a realistic calculation of soil water movement, detailed plant-water relations, or a representation of deep water uptake. In this 

study we show how including a process-based soil hydrology scheme in the LPJ-GUESS (Lund-Potsdam-Jena General 

Ecosystem Simulator) model can improve its usefulness for simulating the functioning of dryland ecosystems. By replacing 15 

the default 15-layer bucket representation of soil hydrology in LPJ-GUESS v4.1 with a mechanistic description of soil water 

movement based on the 1D Richards Equation, we show that the model is better able to capture seasonal patterns of water 

cycling through dryland ecosystems at both the site level and the regional level. In addition, the inclusion of a new set of 

bottom boundary conditions, such as a permanent groundwater layer, further expands the range of ecosystems the LPJ-GUESS 

model can simulate. We show that soil bottom boundary conditions, in particular varying levels of groundwater depth, can 20 

have a large influence on vegetation composition and water cycling. Our new model developments open new avenues to 

simulate dryland ecohydrology more realistically. 

1 Introduction 

Dryland ecosystems are globally important, as they account for about 40% of Earth’s terrestrial surface and net carbon uptake, 

while sheltering more than 30% of the human population (Gilbert, 2011; Grace et al., 2006; Wang et al., 2012). Drylands have 25 

been shown to drive the interannual variability and long-term trend of the global land carbon sink (Ahlstrom et al., 2015; 

Poulter et al., 2014) and a 10% increase in vegetation cover in semi-arid lands has been observed globally over the past decades 

(Ruehr et al., 2023). Recently it has been shown that more than 30% of global dryland ecosystems are dependent on access to 

groundwater, including several important global biodiversity hotspots, while more than half of these groundwater-dependent 

ecosystems are located in regions with declining groundwater trends (Rohde et al., 2024). Unsurprisingly, drylands are known 30 
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to support trees with the deepest root systems over all biomes globally, with observed rooting depths down to 60 m in the soil, 

providing access to the groundwater table (Do et al., 2008; Fan et al., 2017).  

Dynamic vegetation models (DVMs) are process-based tools that can help to gain deeper insights into the functioning of 

dryland ecosystems and their link with soil hydrology. By integrating a multitude of processes from the leaf level (e.g., 

photosynthesis) up to the ecosystem level (e.g. competition, carbon cyling) these models help to quantify the role of various 35 

biomes in the global carbon and water cycle, study vegetation demographic changes, as well as predict ecosystem response to 

future climate scenarios (Prentice et al., 2007). Several studies used DVMs to study dryland ecosystems, either as their main 

biome of focus or within the context of global studies (Ahlstrom et al., 2015; Baudena et al., 2015; Boke-Olén et al., 2018; 

Brandt et al., 2017, 2018; Dashti et al., 2021; Haverd et al., 2017; Hickler et al., 2005; Lehsten et al., 2016; Meunier et al., 

2022; Scheiter et al., 2019; Seaquist et al., 2009; Verbruggen et al., 2021a, b, 2024). However, only a few studies updated the 40 

parameterization and evaluated the performance of DVMs for drylands specifically (Dashti et al., 2021; Verbruggen et al., 

2021a, b). Furthermore, only limited attention has been given to identifying the important processes for reliably simulating 

dryland ecohydrology (Whitley et al., 2017). 

In this study we focus on the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) version 4.1 dynamic vegetation 

model (Smith et al., 2001, 2014). This model was used in several of earlier mentioned the dryland studies, where it was shown 45 

to be capable of simulating tree-grass co-existence in savannas, to reasonably simulate carbon and water fluxes at the site- and 

regional level, and to capture the overall greening trends in the Sahel (Hickler et al., 2005; Verbruggen et al., 2021a, 2024). 

The model’s hydrological representations have also been evaluated favourably against global data products of runoff, 

evapotranspiration and near-surface soil moisture (Gerten et al., 2004; Zhou et al., 2024). 

Despite its good overall performance, a few important processes are still missing in LPJ-GUESS to capture dryland 50 

ecohydrology reliably. These developments are needed to make the model more useful and realistic for future projections of 

drylands under changing climatic conditions, as well as correctly capturing the competition for soil water of different 

vegetation types. A first fundamental limitation of the model is its oversimplied representation of soil hydraulics, i.e. the 

dynamics of soil water through the different layers. Plant water uptake from the soil through their roots is a critical process for 

water-limited ecosystems such as drylands. Therefore, if the basic physics of soil water dynamics are poorly represented in an 55 

ecosystem model, the model will struggle to correctly capture and project the vegetation response to changes in soil water 

conditions, such as drought or high rainfall extremes. While the current version (v4.1) of LPJ-GUESS already improved the 

resolution of the soil layers from 2 coarse layers of 0.5 m and 1.0 m thickness (v4.0) (Gerten et al., 2004) to 15 layers of 0.1 

m thickness (Zhou et al., 2024), and while the global model output is evaluated favourably against observations, the dynamics 

of water percolation between the simulated soil layers are based on a bucket model. However, most of the DVMs today 60 

represent soil water movement based on gradients of soil water potential (Richards equation). 

In this paper we show that the bucket model simplification in LPJ-GUESS creates unrealistic soil water dynamics for drylands, 

as well model artifacts, such as a discontinuous average soil water profile that enables the model to simulate tree–grass 

coexistence for the wrong reasons. We solve these issues by implementing a new soil hydrology scheme for the LPJ-GUESS 
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model. This new soil hydrology simulates mass-conservative movement of soil water based on gradients in water potential by 65 

adopting the implementation of Ireson et al. (2023) to solve Richards equation in LPJ-GUESS. We keep the number of soil 

layers fixed to 15, but the thickness of the different layers can now be changed, opening up the model to simulate different soil 

depths. Our new model version also allows the simulation of two additional bottom boundary conditions, besides the default 

free drainage condition: bedrock and aquifer. The bedrock condition does not allow for any water to percolate out of the system 

by baseflow runoff, while the aquifer condition simulates an additional layer of groundwater beneath the bottom layer. These 70 

improvements allow the model to simulate a variety of drylands conditions, ranging from shallow soils to deep groundwater-

dependent ecosystems. 

After introducing these new model developments, we evaluate the new model against observations of dryland carbon and 

water cycles. In particular, we compare the model outputs with site-level fluxtower data from Senegal as well as global data 

products, focusing on the Sudan-Sahel region. Finally, we perform a few sensitivity tests on the new model. In earlier work 75 

we have shown that terrestrial biosphere models have only low sensitivity to soil texture in the tropics (Meunier et al., 2022) 

and in this current paper we test whether changing the soil hydrology has any impact on this sensitivity. For a second sensitivity 

test we investigated how changing groundwater table depths (GWTD) may influence simulated vegetation cover and surface 

hydrology. By doing this we show how our new hydrology scheme opens up the model capability for simulating soil water 

dynamics in groundwater-dependent dryland ecosystems. 80 

2 Methods 

2.1 Focus area: Sudan-Sahel region and the Dahra fluxtower site 

The Sudan‐Sahel region is an ecoclimatic transition zone located between the Sahara Desert and the humid Guinean zone 

(Figure 1). The northern Sahel region is defined by the 150 and 600 mm mean annual precipitation (MAP) levels as its northern 

and southern boundaries. For the southern Sudanian zone the annual rainfall varies between 600 and 1000 mm on average 85 

(Karlson and Ostwald, 2016) (Figure 1). The vegetation cover follows this strong North-South precipitation gradient, varying 

from grassy savannas and shrublands in the north to open dry forests in the south (Souverijns et al., 2020). Most rainfall 

occurrence is limited to a short wet season, which usually takes place between June and October. 

For the site-scale simulations and model evaluation we focused on the Dahra fluxtower site, located in the Sahelian zone of 

Senegal (15°24′10′′ N, 15°25′56′′ W). This site is a grazed semiarid savanna with a mean annual rainfall of 416 mm which 90 

mainly occurs during a short rainy season (July–September). It is equipped with a study tower measuring meteorological, 

hydrological and radiation sensors, as well as an eddy covariance system for continuously measuring carbon, water and energy 

fluxes since 2010 (Tagesson et al., 2015; Wieckowski et al., 2024).  
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 95 
Figure 1. Map of the Sudan-Sahel region in West and Central Africa, including the mean annual precipitation levels that define 

the Sahelian (150–600 mm) and the Sudanian (600–1,000 mm) regions. Rainfall was obtained from ERA5‐Land data (Muñoz-

Sabater et al., 2021) and averaged over the entire timespan (1950–2022). Location of the Dahra, Senegal eddy covariance 

fluxtower (15°24′10′′ N, 15°25′56′′ W) is marked by an asterisk. 
 100 

2.2 Baseline model 

2.2.1 LPJ-GUESS v4.1 

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) v4.1 is a dynamic vegetation model which simulates 

global vegetation cover and functioning, together with its associated water, carbon and nitrogen cycles (Smith et al., 2001, 

2014). Global vegetation is represented by a set of plant functional types (PFTs) which group all terrestrial vegetation species 105 

in broad classes of functional similarity. Heterogeneity in size-age classes within each PFT is accounted for by using cohorts 

as the basic vegetation unit in the model. Vegetation growth is primarily driven by photosynthesis, and modulated by 

competition for light, soil water and soil nitrogen between cohorts. The smallest unit of explicit spatial information is the 

gridcell, whose size depends on the spatial resolution of the meteorological and soil input data (here 0.1° × 0.1°). Within each 

gridcell, the model simulates a large number (here 100) of replicate patches (size 1000 m²) in order to average out the impact 110 

of patch-level stochastic disturbance events, which will create different life histories between patches. Plant ecophysiological 

processes and soil hydrology are resolved at a daily time step, while carbon allocation and vegetation dynamics are accounted 

for at the end of each simulated year. 

The model couples the calculation of leaf-level photosynthesis with stomatal conductance. Plant water status is represented as 

the ratio between root-zone water supply and canopy water demand. Low values of this ratio will cause the vegetation to be 115 

drought stressed, leading to a reduction of photosynthesis by stomatal closure. This ratio will also modulate the carbon 

allocation between the above- and belowground plant tissues, as well as trigger leaf growth and abscission for raingreen PFTs. 

The PFT parameters of the LPJ-GUESS model have previously been updated for the Sudan-Sahel region, both across a network 

of site-level fluxtowers (Verbruggen et al., 2021a) and at the regional scale (Verbruggen et al., 2021b, 2024). For this study 

we again use this updated regional parameter set, simulating the following PFTs: C4 grass, Tropical Evergreen Trees, Tropical 120 

Raingreen Trees, and Tropical Shrubs (Supplementary Table 1). 
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2.2.2 Standard soil hydrology 

Soil hydrology in the default version of LPJ-GUESS v4.1 is represented by either a two-layer model or a multi-layer model. 

The original two-layer scheme simulated two soil layers of thickness 50 cm and 100 cm respectively (Gerten et al., 2004) 

while the multi-layer scheme provides a greater vertical resolution by simulating 15 layers of 10 cm thickness each (Zhou et 125 

al., 2024). The soil water available for plants in each layer is modelled as the fraction of water content (0 ≤ wcont ≤ 1) between 

the wilting point (θWP) and field capacity (θFC): 

 

𝑤𝑐𝑜𝑛𝑡 =
θ − θ!"
θ#$ − θ!"

(1) 

 130 

where θ is the soil water content (m3/m3) in each layer, and is limited to [θWP, θFC] (see also Supplementary Materials S1.1). 

For each patch and each daily timestep, plants can transpire water from all layers, depending on soil water content and PFT 

root fraction for each soil layer, as well as patch-level water demand, cohort water stress status, cohort foliar projective cover 

(FPC), and a PFT parameter emax (mm/d) which will limit daily transpiration (Supplementary Materials S1.2) (Sitch et al., 

2003). Vertical root distribution is modelled by an asymptotic equation (𝑅𝐷%&'&( = 1 − 𝛽)**+, ) which calculates the 135 

cumulative root fraction (RDcumul) downward in function of depth (z) and a PFT-specific shape parameter βroot (Jackson et al., 

1996). If this cumulative fraction does not reach unity at the bottom layer, the missing root biomass fraction is assigned to the 

bottom layer. Water can evaporate from the top two soil layers (20 cm) depending on remaining water content, atmospheric 

water demand (daily equilibrium evaporation) and the bare soil fraction of the patch (Gerten et al., 2004; Rost et al., 2008). 

See supplementary materials S1.3 for more details. 140 

Rainfall adds water to the system, part of which will be intercepted by the vegetation leaf cover, from which it evaporates. 

Remaining rain water and snow melt reaches the upper soil layers (0–50 cm), which are replenished according to their water 

holding capacity. Excess water above field capacity is removed from the system as surface runoff. Percolation transports water 

downward to deeper soil layers and is calculated as a power law in function of available water content: 

 145 

𝑝𝑒𝑟𝑐(𝑙) = 𝑝- ∗ 𝑤𝑐𝑜𝑛𝑡(𝑙).! (2) 

 

where pb and pe = 2 are shape parameters (see Sup. Mat. S1.1). For both model configurations, water percolates from the upper 

soil layers (0–50 cm) to the lower layers (50–150 cm). For the multi-layer representation, the percolated water is distributed 

between the sublayers, according to their water holding capacity. Notably, percolation is limited to days for which the sum of 150 

rainfall and snow melt is higher than 0.1 mm (hard-coded) (Nord et al., 2021). A fraction of plant-available water in the lower 

layers (50–150cm) further percolates out of the system as baseflow runoff. Finally, excess water in each layer dissipates out 

of the system as lateral flow runoff. 
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Calculated soil hydraulic properties include the water content at wilting point and field capacity, as well as the parameters of 

the percolation power law. These parameters are calculated by pedotransfer functions from soil textural data, which are given 155 

as an input for the model and are assumed to be constant over all soil layers (Cosby et al., 1984; Gerten et al., 2004), see 

Supplementary Materials S1.1. 

2.3 Soil hydrology model updates 

2.3.1 Soil layer structure and water representation 

By default, our updated version of the model, presented in this paper, still uses 15 soil layers of 10 cm thickness. However, 160 

the number and thickness of soil layers can now be adjusted individually without affecting the simulated hydrological 

processes, i.e. all layers – except the top and bottom layers – are processed equally and no layers are grouped together. Soil 

water content θ can vary between the water content at wilting point (θWP) and saturation (θS). The model simultaneously tracks 

θ, the soil water potential ψ (m) and the hydraulic conductivity k (m s-1) for each layer, based on the Campbell (1974) relations: 

 165 

ψ = ψ/(θ/θ/)0- (3) 

𝐾 = 𝐾/(θ/θ/)1-23 (4) 

 

where ψS, θS and KS are parameters which represent the soil water potential (m), content (m3 m-3) and soil hydraulic conductivity 

(m s-1) at saturation, respectively. b is an empirical parameter (Campbell, 1974). These four parameters are derived from soil 170 

texture using pedotransfer functions from Cosby et al., (1984) and Romano and Santini (2002) (Supplementary Materials 

S1.1). To retain compatibility with processes outside soil hydrology (e.g. plant water uptake), the water content fraction wcont 

is still calculated from θ using Eq. (1). Soil textural data and the derived soil hydraulic parameters are assumed to be constant 

over all layers, but this can be changed by making a few modifications to the model code.  

2.3.2 Soil water dynamics based on Richards equation 175 

Soil water movement between layers is based on gradients in soil water potential, together with a gravitational term. It is 

calculated by integrating the change in ψ over every daily model timestep, using a ψ-based form of the 1D Richards equation: 

 
∂ψ
∂t =

1
𝐶(ψ)

∂
∂z >𝐾

(ψ) >
∂ψ
∂z − 1? − 𝑆?

(5) 

 180 

where the specific moisture capacity C(ψ) = dθ/dψ and hydraulic conductivity K(ψ) are calculated from the Campbell relations 

above (Eqs. (3) and (4)) (Celia et al., 1990; Ireson et al., 2023) and the sink term S represents water uptake by plant roots in 

our model, although this term can include water release as well (e.g. to account for hydraulic lift) in a future version of the 
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model. For the discrete solution of this ordinary differential equation (ODE) we based our implementation on the mass-

conservative “openRE” approach, using a sub-daily adaptive timestep ODE solver (Ireson et al., 2023). The following 185 

workflow is modified from Ireson et al. (2023) in order to account for variable layer thickness (Δz; units: m). 

We assume a system of N soil layers, with an index i that varies between the surface (i=1) and the bottom layer (i=N). The 

rate of change in soil water potential ψi (m) for each soil layer i is given by: 

 
∂ψ
∂𝑡 B4

= −
1

𝐶(ψ4)
∂𝑞
∂𝑧B4

=
1

𝐶(ψ4)
𝑞405,4 − 𝑞4,425 − 𝐸𝑡4

Δ𝑧4
(6) 190 

 

where ∂q is approximated by the balance of incoming (qi-1,i) and outgoing (qi,i+1) water fluxes. Eti is the implementation of the 

sink term (S) in Eq. (5), here accounting for plant transpiration from layer i (m day-1), and Δzi is the thickness (m) of layer i. 

For the internal layers (i∈[2,N-1]) the incoming and outgoing fluxes have a similar functional form, as the flux from layer j to 

layer k is given by: 195 

 

𝑞7,8   =   −
𝐾(𝜓8) + 𝐾L𝜓7M

2 N
𝜓8 −𝜓7
Δ 𝑧7,8

− 1O (7) 

 

where Δzj.k = (Δzj + Δzk)/2 is the center-to-center layer distance between both layers. Note that these fluxes can go in any 

direction, so the "incoming" flux may as well be an outgoing water flux from layer k to j if the water potential gradient is strong 200 

enough. As discussed by Ireson et al. (2023), we use the arithmetic mean of K at the layer center points, but other formulations, 

such as the harmonic mean, are possible as well (Ireson et al., 2023). The fluxes at the top and bottom layers (i∈{1,N}) are 

determined by the boundary conditions. 

2.3.3 Boundary conditions 

The incoming water flux for the top layer (q1) consists of the incoming net infiltrating water and snowmelt from the surface 205 
(Win), minus the outgoing soil surface evaporation (Es) from this first layer, both with units [m day-1] 

 

𝑞5 = 𝑊49 − 𝐸𝑠 (8) 

 

For the bottom boundary condition (qN) we provide three possible options: free-drainage, bedrock, or aquifer. 210 

Under the free-drainage condition we assume that the layers below the bottom layer are in hydrological equilibrium with the 

bottom layer, i.e. they have the same hydraulic conductance KN and water potential ψN as the bottom layer. Hence, there is no 

water potential gradient and water percolation is therefore solely driven by gravity. Setting ψj = ψk = ψN in Eq. (7), we obtain: 
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𝑞: = 𝐾(ψ:) (9) 215 

 

For the bedrock boundary condition, we model an artificial bedrock layer below the bottom layer through which no water can 

be tranported. This is implemented by the condition that the flux from the bottom layer to the layers below is zero: 

 

𝑞: = 0 (10) 220 

 

Finally, for the aquifer bottom boundary, we assume that the layers below the bottom layer are fully saturated, ie. ψk = ψs in 

Eq. (7), which then reduces to 

 

𝑞: = −
𝐾/ +𝐾(ψ:)

2 >
ψ/ −ψ:
Δ𝑧:/2

− 1? (11) 225 

 

where Ks=K(ψs) is again the hydraulic conductivity at saturation, and ΔzN/2 is the distance between the bottom layer center 

and the aquifer. This boundary condition can act as an additional source of soil water, as water can be transported upward into 

drier soil layers above whenever a strong gradient in in soil water potential emerges. 

2.3.4 Evaporation and runoff 230 

The calculation of surface evaporation (Es), transpiration (𝐸𝑡 = ∑ 𝐸𝑡44 ) and interception loss (Ei) is unaltered from the original 

model version, with the difference that surface evaporation only occurs from the top layer (10 cm) (Supplementary Materials 

S1). The sum of these components is the total evaporation (E=Es+Et+Ei) (see also Miralles et al. (2020) for a discussion on 

this terminology). The removal of water by Es and Et is implemented inside the ODE solver routine, as described earlier. 

Precipitation (P) that is not intercepted reaches the top soil layer and replenishes the water content of this layer until it reaches 235 

saturation (θsat). Any excess above θsat is removed as surface runoff (Rsurf), so the net water infiltration (Win) is given by: 

 

𝑊49 = 𝑃 − 𝐸𝑖 − 𝑅/&); (12) 

 

At the end of each simulated day, a fraction (fdrain) of excess water content above field capacity in each layer i is removed as 240 

lateral drainage (Rdrain,i), following a similar implementation in the Community Land Model version 5 (Lawrence et al., 2019). 

This fraction is calculated as the tangent of the terrain slope, multiplied by a lateral flow parameter (default value 1). Terrain 

slope is set to a fixed value 2° but the code can be easily adapted to read this value from a map for each gridcell. The  drainage 

fraction therefore has a default value of fdrain = 0.034 in the current implementation, so by default 3.4% of the excess water is 

removed as lateral drainage. Together with the baseflow runoff from the bottom layer (Rbase = qN) these three components form 245 

the total runoff (R = Rsurf + Rdrain + Rbase, where 𝑅<)=49 = ∑ 𝑅<)=49,44 ). 
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2.3.5 Numerical integration and water mass balance 

The LPJ-GUESS v4.1 model runs with a daily timestep, during which hydrological processes – such as surface evaporation, 

plant transpiration and runoff – as well as several vegetation-related processes are calculated. Between these daily timesteps, 

our updated soil hydrology scheme calculates the percolation between layers using the framework described above, using a an 250 

ODE solver with an adaptive sub-daily timestep in order to minimize integration errors (see further) (Ireson et al., 2023). 

During each timestep of the LPJ-GUESS model, the daily hydrological processes used in the equations above (Win, Et, Es) are 

passed on as constants to the sub-daily RE integrator, which automatically converts them from daily to subdaily rates, 

depending on the number of sub-daily integration timesteps (NTS) the ODE solver uses (i.e. multiplication by dt = 1/NTS). 

At every daily timestep, the water mass balance error (εWB) for the entire soil column is calculated as the difference between 255 

the different incoming and outgoing water fluxes and the total soil column water storage Δθ term: 

 

ϵ!" = 𝑃 − 𝐸 − 𝑅 − Δθ (13) 

 

where the storage term Δθ represents the change in soil water content compared to the previous daily timestep, and this will 260 

be the main contributor to εWB due to numerical integration errors in the solution of Richard's equation. 

To ensure water mass balance closure we follow the procedure from Ireson et al. (2023). We include the cumulative boundary 

fluxes (Q1 and QN) to our system of ODEs, which are calculated as the sum of q1 and qN over all daily time steps since the start 

of the simulation: 

 265 

𝑄7 = [ 𝑞7(𝑡)
+"#$

+>?

(14) 

 

for j∈{1,N}. Therefore, the complete system of ODEs that is integrated over any given daily time-step t is given by: 

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑑𝑄5
𝑑𝑡
𝑑𝜓5
𝑑𝑡
𝑑𝜓1
𝑑𝑡
⋮

𝑑𝜓:05
𝑑𝑡
𝑑𝜓:
𝑑𝑡
𝑑𝑄:
𝑑𝑡 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑞5

  −
1

𝐶(𝜓5)
𝜕𝑞
𝜕𝑧B5

  −
1

𝐶(𝜓1)
𝜕𝑞
𝜕𝑧B1

⋮

  −
1

𝐶(𝜓:05)
𝜕𝑞
𝜕𝑧B:05

  −
1

𝐶(𝜓:)
𝜕𝑞
𝜕𝑧B:

𝑞: ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

(15) 270 
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The ODE integrator solves this system for the water potentials ψi in each soil layer i, as well as the cumulative boundary fluxes 

Q1 and QN. To integrate this system of ODEs we used the runge_kutta_cash_karp54 adaptive timestepper from the odeint 

library in the boost C++ package (Ahnert and Mulansky, 2011). A code snippet with an overview of the basic implementation 

is given in Supplementary Materials S2, and the full model code can be accessed from a Zenodo archive (Verbruggen et al., 275 

2025). 

2.4 Model setup and forcing data 

To assess the impact of these changes in the hydrological scheme on dryland ecosystem dynamics, model simulations were 

performed at two distinct spatial scales. Site-scale simulations were run for the Dahra fluxtower site in Senegal, while we also 

performed regional simulations over the entire Sudan-Sahel region (Figure 1). The parameterization of the plant functional 280 

types in LPJ-GUESS has previously been optimized for both the site level (Dahra, Senegal) and the Sudan-Sahel region, and 

we continued to use these parameters for both the site-level and regional simulations (Verbruggen et al., 2021a, 2024). An 

overview of these parameters is given in Supplementary Materials S3. 

The LPJ-GUESS v4.1 model is driven by daily averages of air temperature (°C) at 2 m height, incoming short-wave radiation 

(W m-2) and precipitation rate (mm day-1). Site-level simulations used the meteorological data from the Dahra fluxtower site 285 

in Senegal, which were measured at 30 minute intervals for the the 2002–2022 period (Tagesson et al., 2015). We averaged 

these measurements over each day and used a gap-filling procedure to obtain a continuous driver data set for the entire period 

2002–2022 (Supplementary Materials S3). Soil texture input (95.04% sand, 4.61% silt, 0.35% clay) was obtained from local 

measurements (Tagesson et al., 2015). 

Regional scale simulations were driven by daily averaged ERA5-Land meteorological data for the 1950–2022 period at a 0.1° 290 

spatial resolution (Muñoz-Sabater et al., 2021). Regional soil texture data were obtained from the 250 m resolution ISRIC 

Africa SoilGrids database for six soil depths (Hengl et al., 2015). We averaged these soil texture data over all depths and 

regridded the data to match the meteorological driver grid. 

For both spatial scales, we started the model simulations from bare soil with a 500-year spinup phase, at which the atmospheric 

CO2 level was fixed at 296 ppm, corresponding to the 1901 level. For the site scale we used the first 10 years of the Dahra 295 

fluxtower meteorological driver time-series in a cycle for the spinup, while for the regional scale we used the first 30 years of 

the ERA5-Land data product. Air temperature was detrended for both spinup drivers. This spinup phase was followed by a 

historical simulation (1901–2022) using the historical increase in the atmospheric CO2 level (Friedlingstein et al., 2023) but 

still using the shortened meteorological drivers from the spinup-phase. Once the starting date of the original meteo data is 

reached (i.e. the year 2002 for the Dahra drivers, and 1951 for the ERA5-Land data product) the full meteorological time-300 

series are used to drive the model simulations until the year 2022. 

All simulations were performed for the model versions with the original (“Default”) and the updated (“RE”) soil hydrology 

schemes, in order to enable comparison of both model versions and to analyse the impacts of the new model developments on 
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dryland ecohydrology. For evaluating the models against observation-based data products (see next section), we only used the 

"free drainage" bottom boundary condition for the RE-based model, as this condition is the closest to the one used by the 305 

original model. 

2.5 Evaluation data 

To evaluate the two model versions at the site level, we used water and carbon fluxes, as well as soil moisture data from the 

Dahra fluxtower site, which were measured simultaneously with the meteorological drivers using the eddy covariance 

technique and soil moisture sensors (Tagesson et al., 2015; Wieckowski et al., 2024). From these we also calculated and 310 

evaluated the water use efficiency (WUE), defined as the ratio of daily GPP to ET (𝑊𝑈𝐸 = 𝐺𝑃𝑃/𝐸𝑇) after filtering out days 

with an ET below 0.01 mm. At the regional scale we evaluated the model against the GLEAM v3.8a data product over the 

period 1980–2022 (Martens et al., 2017; Miralles et al., 2011). We averaged model output (originally at 0.1° resolution) to 

match the 0.25° grid used by GLEAM and compared total evaporation (E), soil evaporation (Es), plant transpiration (Et). The 

GLEAM data product also includes assimilated surface soil moisture from the Climate Change Initiative (CCI) programme of 315 

the European Space Agency (ESA) (Dorigo et al., 2017; Gruber et al., 2017), against which we evaluated our soil moisture 

simulations. We also compared total vegetation leaf area index (LAI) in function of MAP against remotely sensed 

measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Myneni et al., 2021) which were obtained 

using the "appeears" software package (Hufkens, 2023). 

2.6 Model sensitivity tests 320 

2.6.1 Soil texture 

Soil hydraulic properties in the LPJ-GUESS v4.1 model are derived from soil texture using pedotransfer functions (Cosby et 

al., 1984; Smith et al., 2014). These include soil water content at wilting point (qWP), field capacity (qFC), saturation (qSAT), 

hydraulic conductivity at saturation (KS), and the slope (b) of the soil water retention curve (Supplementary Materials S1). We 

tested the model sensitivity to soil texture for both soil hydrology representations. To do so, we made a series of simulations 325 

for the Dahra fluxtower site in Senegal, where we replaced the actual soil texture by all possible combinations of sand/clay/silt 

contents, and analyzed the simulated ecosystem response. Note that resulting soil hydraulic properties are the same between 

both model versions: the only difference is due to the different soil hydrology processes. For the RE-based model we used the 

"free drainage" bottom boundary condition, which matches the bottom boundary condition of the default model version the 

most closely. For the response variables we analyzed vegetation leaf cover (LAI) and the different evaporation components. 330 

We compared the sensitivity of the default model version with our RE-based update by calculating the mean, standard deviation 

and coefficient of variation of the model outputs over all soil textures, based on the averaged values over all years. Results 

were visualised using ternary plots, including a scaling by the maximum (over all soil textures) value of model output, in order 

to facilitate comparison of the sensitivities of the different analyzed output variables to soil texture. 
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2.6.2 Groundwater table depth 335 

The new model version allows for using different bottom boundary conditions at any soil depth. For a second sensitivity test 

we analyzed the impact of GWTD on dryland vegetation by activating the aquifer bottom boundary condition and running the 

model for different soil depths. Soil depth was varied by keeping the number of layers constant to 15 but changing the thickness 

of the bottom 10 layers. We again used the site simulation for Dahra as baseline, but now imposing an aquifer at depths ranging 

from 0.75 m to 6 m in steps of 0.25 m, and analyzed the simulated vegetation cover (LAI) and evaporation components, as 340 

well as the different runoff components in function of water table depth. We also analyzed the influence of groundwater depth 

on soil moisture and root water uptake for each soil layer, separated into the dry and wet season. 

3 Results 

3.1 Model performance at Dahra fluxtower site 

A comparison of the average yearly cycles of the evaporation and runoff components revealed significant differences between 345 

both model versions (Figure 2). The sum of the evaporation total (E) over the year was similar (around 300 mm/y) for both 

model versions, comprising a significant portion of average yearly rainfall (416 mm). While the updated model version had a 

higher E (values up to 3.9 mm/day) during the rainy season, compared to the default model (3.5 mm/day), this increase was 

compensated by a shorter tail in E after the rainy season (Figure 2b). The higher wet-season E in the RE model was caused by 

a higher soil surface evaporation rate (Es), while the longer subsequent tail in the default model was caused by dry-season 350 

transpiration (Et) by tree PFTs from deeper soil layers. Transpiration during the wet season was also overall lower (by 0.15 

mm/day on average) in the RE model version. Interception losses were negligible in both model versions (< 4 mm/y). Woody 

vegetation cover was strongly reduced in the updated model version, resulting in a higher grass cover and a lower total 

vegetation cover overall (Figure S3). Especially evergreen trees, being the woody PFT with the highest cover (7.6%) in the 

default model version saw a strong reduction to 0.6% in the RE-based version. The overall lower vegetation cover resulted in 355 

a higher fraction of bare soil (42.0% in the new model), leading to an overall higher soil evaporation rate (Figure 2b). Our 

new model version also simulated an overall reduced surface runoff during rainfall peaks, from averages of 61.9 mm/y for the 

default model to 57.1 mm/y for the RE-based model (Figure 2c). Also baseflow runoff was reduced (2.31 mm/y for default 

model to 1.85 mm/y for RE-based model), while lateral flow had an increase over the entire rainy season, compared to the 

default model version (from 3.05 mm/y for the default model to 11.1 mm/y for the RE-based model). 360 

Including the other boundary conditions, our model versions had a very distinct average seasonal cycle in soil moisture content 

(Figure 3). The default model hydrology simulated a build-up of soil moisture with depth for both the shallow (0–50 cm) and 

the deep (50–150 cm) soil layers, except for the bottom soil layer which was drained. Simulated soil moisture showed a clear 

discontinuity around 50 cm soil depth, both in magnitude and timing (Figure 3a). In contrast, the RE-based model versions 
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simulated a continuous soil moisture profile, decaying with layer depth and following the timing of the rainy season (Figure 365 

3b-d). 

We found little difference between the “free drainage” and “bedrock” bottom boundary conditions (Figure 3b-c). However, 

the “aquifer” boundary condition showed a strong upward capillary movement of water from the imposed saturated layer 

below the bottom layer. This resulted in a year-round soil moisture availability below 60 cm depth, with values higher than 

the soil water added by the rainy season precipitation (Figure 3d). The impacts of this aquifer on the simulated vegetation 370 

cover are discussed in detail further in this paper (Section 3.5) where we show the results of GWTD sensitivity tests. 

Evaluating both model versions (with free drainage) against in-situ measurements of carbon and water fluxes showed only 

small differences in model performance, for both the full-year and wet-season metrics (Figure 4, Table 1). Simulated GPP by 

both model versions underestimated the eddy covariance-derived GPP overall. The start of the growing season around day 180 

was much more abrupt in both models, compared to the smoother transition in the measurements. This is because all raingreen 375 

plants become active with full leaf cover at the same time in the model, while in reality there will be some variability in leaf 

flushing between individuals, as well as a more gradual leaf growth. Dry season GPP fluxes were underestimated by both 

models and close to zero overall, although the default model version had a larger tail in GPP after the end of the rainy season 

(Figure 4a). Ecosystem respiration fluxes (Reco) during the rainy season were slightly better represented in the updated model 

version, having lower RMSE and higher correlation with observations than the default version, while dry season respiration 380 

was relatively well captured by both models (Figure 4b, Table 1). As the sum of these components, the total NEE was poorly 

represented by both models, underestimating the observed net productivity in the rainy season and simulating a small source 

of CO2 during the dry season, in contrast to the observed sink (Figure 4c). In contrast to carbon fluxes, water fluxes (E) were 

fairly well represented by both models (Figure 4d, Table 1). The new RE-based model showed a better agreement with the 

peak evaporation during the wet season, while slightly overestimating the early wet season E and underestimating its tail. 385 

Similar to its GPP performance, the default model version better captured the fluxes at the start of the dry season (Figure 4d). 

Water use efficiency was underestimated by both models during the core growing season, mostly due to the underestimation 

of GPP. However, simulated WUE values were close to the measuements during the first month of the growing season. On 

the other hand, the low ET values in the late growing season and the dry season let to a significant overestimation of WUE in 

those periods (Figure 4e). For both models, simulated WUE was the closest to observation-derived WUE during the wet 390 

season, where the default model had a lower RMSE, but the RE-based model had a sligthly higher correlation (Table 1). For 

reference, full time series are shown in the supplementary materials (Figure S4). 

Soil moisture in the two upper layers (5cm, 10cm) was overestimated by the RE-based model, while the default version 

underestimated soil moisture in these layers (Figure 5a,b). The best agreement with observations was found at 30cm soil 

depth, where both models captured the soil moisture relatively well during the rainy season (Figure 5c). For the deeper layers 395 

the models start to diverge from each other and from observations. At 50 cm depth the soil moisture peak by the start of the 

rainy season is relatively well captured by the default model, although soil moisture content is underestimated during the rainy 

season and overestimated in the early dry season. In contrast, the RE-based version shows a delayed rise in soil moisture, but 
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captures the tail of the rainy season and the start of the dry season relatively well (Figure 5d). At 100 cm depth neither model 

version reproduces the observed soil moisture. The RE-based version underestimates – and negatively correlates with – 400 

measurements, while the default model version overestimates soil moisture and its peak is delayed by about 20 days. (Figure 

5e, Table 1). While observed soil moisture still clearly shows a peak caused by the rainy season at 100 cm depth, both model 

versions have lost most of the rainy season fingerprint at this depth, especially its timing. Full time series are provided in the 

supplementary materials (Figure S5). 

Finally, all model versions showed a good water mass balance closure, as the sum of the rainfall, evaporation and runoff 405 

components each year nearly matched the change in water column storage, resulting in an overall low accumulated water 

balance error (Eq. (13), Figure S6). The aquifer bottom boundary condition showed a higher water mass balance error than 

the other model setups, with an accumulated error equal to 0.14% of the accumulated rainfall over the years 2002–2022, while 

the other model versions performed better (< 0.002%) (Figure S6). 

 410 
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Figure 2. Average yearly cycle of simulated hydrology at the Dahra site in Senegal for 2002-2022, comparing the default LPJ-

GUESS v4.1 multilayer soil hydrology (Default; dotted line) with the updated soil hydrology based on Richard’s equations 

with the “free drainage” bottom boundary condition (RE; solid line). Figures show 5-day moving averages of (a) in-situ 

measured daily rainfall for reference, (b) simulated daily evaporation components, and (c) simulated daily runoff components. 415 

 

 

0

2

4

6

0 60 120 180 240 300 360
Day of year

R
ai

nf
al

l (
m

m
/d

)

(a)

0

1

2

3

0 60 120 180 240 300 360
Day of year

Ev
ap

or
at

io
n 

(m
m

/d
) Default

RE

Evaporation total
Interception loss
Soil evaporation
Transpiration

(b)

0.0

0.5

1.0

1.5

2.0

0 60 120 180 240 300 360
Day of year

R
un

of
f (

m
m

/d
)

Default
RE

Baseflow
Lateral flow
Runoff total
Surface runoff

(c)

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

16 

 
Figure 3. Average yearly cycle of soil moisture (m3/m3) for the Dahra fluxtower site, as simulated by the different soil 

hydrology modules in (a) the default version of LPJ-GUESS v4.1 and (b-d) the updated version based on Richards equation 420 

with the available bottom boundary conditions. Boundary conditions include (b) free drainage (the default used for model 

evaluations), (c) impermeable bedrock, and (c) a permanent aquifer below the bottom layer. 
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 425 
Figure 4. Average yearly cycle of measured vs. simulated (a–c) carbon, (d) water fluxes, and (e) water use efficiency at the 

Dahra site in Senegal for the period 2010–2020. Both the standard (“Default”) and the updated (“RE”) model versions of LPJ-

GUESS v4.1 are compared against measurements of (a) GPP, (b) Reco, (c) NEE and (d) ET, as well as the derived WUE (e). 

Figures show 5-day moving averages. 
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Figure 5. Average yearly cycle of measured vs. simulated volumetric soil moisture content at the Dahra site in Senegal for 

2002–2022. Panels show 5-day moving averages of results at different soil layer depths (5–100cm). Simulated results were 

interpolated to match observed layer depths. 

 435 

Table 1. Numerical evaluation of the the standard (“Default”) and updated (“RE”) versions of the LPJ-GUESS v4.1 model 

against measurements made at the Dahra site in Senegal. Carbon and water fluxes span the period 2010–2020 while soil 

moisture measurements (5–100cm) cover 2002–2022. Metrics used are the RMSE and Pearson correlation coefficient (R), 

calculated over the entire time-series for both the complete years as well as the rainy seasons separately. The start and end of 

the rainy season is based on the climatological anomalous accumulation. All correlations are significant (p < 10-3) except where 440 

indicated in bold with a cross (´). Units for RMSE values are gC/m2/day for carbon fluxes (GPP, Reco, NEE), mm/day for ET, 

and m3/m3 for soil moisture. 
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Default RE Default RE Default RE Default RE 

GPP 2.71 2.70 3.94 3.90 0.799 0.785 0.528 0.519 

Reco 1.87 1.73 2.46 2.32 0.754 0.785 0.369 0.487 

NEE 1.75 2.06 2.50 2.98 0.397 0.295 0.318 0.202 

ET 0.898 0.983 1.00 1.20 0.869 0.869 0.718 0.725 

WUE 2.24 2.28 0.98 1.31 -0.204 -0.00´ 0.124 0.133 

SM 5cm 0.0224 0.0235 0.0367 0.0397 0.767 0.804 0.711 0.699 

SM 10cm 0.0211 0.0217 0.0326 0.0357 0.788 0.814 0.725 0.707 

SM 30cm 0.0176 0.0236 0.0229 0.0349 0.799 0.668 0.568 0.356 

SM 50cm 0.0166 0.0258 0.0200 0.0375 0.711 0.435 0.547 0.275 

SM 100cm 0.0277 0.0337 0.0312 0.0509 0.097 -0.138 0.194 -0.130 

 

3.2 Regional performance 

In line with the MAP levels, the simulated total evaporation (sum of plant transpiration, bare-soil evaporation and interception 445 

loss) of the RE-based LPJ-GUESS model showed a strong north-south gradient across the entire region, when averaged over 

the period 1980–2022 (Figure 6a). Evaporation values ranged from 100 mm/y in the north to 960 mm/y in the southern parts. 

The updated model matched the GLEAM total evaporation dataproduct relatively well: the average difference between the 

model and GLEAM over all gridcells was -6.2 mm/year, with a spatial standard deviation of 93.7 mm/year (Figure 6b, Figure 

7a). The strongest underestimations by the model were found near water bodies (e.g. along the Senegalese coastline) as the 450 

GLEAM total evaporation also includes open water evaporation. The evaluation also showed strong spatial gradients, as the 

model output tended to lower than GLEAM evaporation in the northern and western parts, while being higher in the southern 

parts and east of 15ºE (Figure 6b). The correlation between our model and GLEAM over 1980–2022 was overall positive, 

with a few negative correlations in the eastern and western parts of the region. The average correlation was 0.34 with a standard 

deviation of 0.26 (Figure 6c, Figure 7b). The performance of the evaporation simulated by the default model was very close 455 

to that of the updated model version, showing nearly identical model-GLEAM differences and correlations (Figure 7a,b). 

Similar to the total evaporation, averages of yearly simulated plant transpiration also followed a strong north-south gradient 

across the region, with values ranging from 32 mm/y to 880 mm/year (Figure 8a). Our RE-based model tended to  simulate 

higher transpiration rates than GLEAM, especially in the eastern parts of the region, with a spatially averaged value of 48 

mm/y and a spatial standard deviation of 71 mm/y (Figure 8b, Figure 7c). The new model version performed better than the 460 

default version, as the latter simulated transpiration rates that were 108±61 mm/y higher than GLEAM (Figure 7c). The 

correlations between either model version and the GLEAM transpiration time-series over 1980–2022 were overall positive, 
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but low on average (R=0.25 for both models) due to a large spatial variability in the correlation, similar to the spatial pattern 

of correlations of the total evaporation (Figure 8c, Figure 7d). 

Complementary to the general overestimations of simulated transpiration, time-averaged bare-soil evaporation was overall 465 

underestimated (-59±61 mm/y) by the RE model across most of the region, except in the southeastern part (Figure 8d,e). 

Correlations between the model and GLEAM time series were overall positive (R=0.19±0.24) and followed a strong north-

south gradient, where the gridcells showing the highest correlations were found in the northern parts, and most gridcells with 

a negative correlation were found in the south (Figure 8f). Soil evaporation simulated by the RE-based model performed better 

than the default model, showing overall smaller differences (Default: -96±51 mm/y) and larger correlations (Default: 0.13±0.2) 470 

with the GLEAM soil evaporation dataproduct (Figure 7e,f).  

Simulated surface and root-zone soil moisture showed very similar geographical patterns, with overall lower soil moisture 

values in the northern areas of the region, especially around 10ºE, while the highest soil moisture values were found in the 

southern and eastern areas (Figure 9a,d). Yet, the RE-based model tended to overestimate GLEAM soil moisture in the 

northern parts, while underestimating it in the southern half, with an average error of -0.012±0.047 m3/m3 for surface soil 475 

moisture and -0.025±0.050 m3/m3 for root-zone soil moisture (Figure 9b,e). Correlation with GLEAM timeseries were mostly 

positive throughout the entire region (R=0.52±0.21 for surface SM, R=0.42±0.20 for root-zone SM) (Figure 9c,f). Simulated 

surface soil moisture by the RE-based model performed better than the default model version, showing both a smaller error 

and a better correlation with the GLEAM dataproduct (Figure 7g,h), while the performance of simulated root-zone soil 

moisture was comparable between both models (Figure 7i,j). Similar to the result for the Dahra site, the average yearly cycle 480 

of the soil moisture profile (here additionally averaged over all gridcells) was highly distinct between the old and the new 

model versions, showing similar results as for the Dahra site-level study (Fig S4). 

 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

21 

 
Figure 6. Regional simulation of yearly total evaporation by the updated LPJ-GUESS v4.1 model for the period 1980–2022. 485 

(a) Multiyear model averages over this time period, (b) difference between multiyear averaged model and GLEAM data, (c) 

Pearson correlation between model and GLEAM for yearly totals over 1980–2022. For panel (b) all outlier values saturate at 

±300 mm/year to avoid distorting the colour scale. 
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 490 
Figure 7. Comparison of the hydrology performance of the standard (Default) and updated (RE) versions of the LPJ-GUESS 

model against the GLEAM dataproduct. The left column shows the dustribution of time-averaged differences between the 

model and GLEAM over all gridcells, while the right column shows the distruibution of corelations with GLEAM, both for 

the period 1980-2022. The evaluated variables are yearly (a,b) total evaporation, (c,d) transpiration, (e,f) soil evaporation, (g,h) 

surface soil moisture, and (i,j) root-zone soil moisture. 495 
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Figure 8. Regional simulation of yearly total transpiration (left) and soil evaporation (right column) by the updated LPJ-

GUESS v4.1 model for the period 1980–2022. (a,d) Multiyear averages over this time period, (b,e) difference between 500 

multiyear averaged model and GLEAM data, (c,f) Pearson correlation between model and GLEAM over 1980–2022. For 

panels (b) and (e) all outlier values saturate at ±300 mm/year to avoid distorting the colour scale. 
 

 
Figure 9. Regional simulation of surface soil moisture (left) and root-zone soil moisture (right column) by the updated LPJ-505 

GUESS v4.1 model for the period 1980–2022. (a,d) Multiyear model averages over this time period, (b,e) difference between 

multiyear averaged model and GLEAM data, (c,f) Pearson correlation between model and GLEAM over 1980–2022. For 

panels (b) and (e) all outlier values saturate at ±0.25 m3/m3 to avoid distorting the colour scale. 
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3.3 Impacts on simulated regional vegetation cover 

Changing the soil hydrology in LPJ-GUESS had a large impact on simulated vegetation cover across the entire Sudan-Sahel 510 

region (Figure 10, Figures S8-S12). Average total vegetation leaf area index (LAI) over the period 2000–2022 decreased over 

the arid parts of the Sahel but increased in the more humid parts after implementing the model updates, amounting to an overall 

average increase of 0.204 m2/m2 (Figure 10). Both model versions overestimated the averaged MODIS LAI measurements, 

but remained within the 5-95 percentile range over all gridcells in each MAP bin (Figure 10). These spatial patterns were 

mainly driven by changes in C4 grass LAI (+0.47 m2/m2 overall) and tropical shrub LAI (+0.39 m2/m2) which followed the 515 

overall north-south gradient in LAI changes (Figures S9–S10). Especially shrub cover increased significantly in the southern 

parts, with changes in LAI up to 3.32 m2/m2 for southern Chad and Sudan (Figure S10). This shrub cover mostly replaced 

raingreen tree PFT which decreased overall (-0.48 m2/m2) and especially in southern Chad and Sudan with reductions in LAI 

down to -2.75 m2/m2 (Figures Figure 10, S10). Evergreen tree LAI also decreased overall (-0.15 m2/m2) in the new model 

version but saw a slight increase in southern Chad and Sudan (Figures Figure 10, S11).  520 

 

 
Figure 10. Simulated vegetation LAI (yearly maxima) in function of MAP over the Sudan-Sahel region for both versions of 

the LPJ-GUESS model. Model output and rainfall data were averaged over 2000–2022 and further averaged into MAP bins of 

100 mm. The red dash-dotted line and the red shaded area represent the MODIS LAI data (2000-2022) average and 5-95 525 

percentile range over all MAP bins, respectively. 

3.4 Soil texture sensitivity 

In this section we present the results of our soil texture sensitivity analysis for which we used the meteoroloigical drivers from 

the Dahra fluxtower site, but artificially varied the soil texture across all possible sand-silt-clay combinations. 
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Focusing on the RE-based model, we found that soil texture had a significant influence on the multiyear averaged simulations 530 

of the evaporation components (Figure 11, Table 2). Total evaporation mainly varied with clay content for the new model, 

ranging from ~320 mm/year for low-clay soils to 183 mm/y on clay soils (Figure 11, Figure S13). Interception loss was 

similarly dependent on clay content, with a preference for more silty soils when clay content was low, while soil evaporation 

was mostly dependent on silt content (48–73 mm/y). Transpiration showed a similar pattern as total evaporation, being its 

main contributor. Transpiration was highest (268 mm/y) for low-clay soils for higher silt content (> 60% silt) and lowest (112 535 

mm/y) for clayey soils (Figure 11, Figure S13). Total evaporation, transpiration and interception loss were highly correlated 

(R>0.94, p<0.0001) with plant-available water capacity (θawc), while soil evaporation showed an anti-correlation with θawc 

(R=-0.65, p<0.0001) (Figure S14). The correlation between the evaporation components and the shape parameter b was also 

high and of the opposite sign, whereas total evaporation, transpiration and interception loss had a strong anti-correlation (R<-

95, p<0.0001) and soil evaporation had a high correlation (R=0.66, p<0.0001) (Figure S14). Other hydraulic parameters, such 540 

as θwp and θfc were either related to θawc or had a low (Ksat) or insignificant (θsat) correlation with evaporation (Figure S14). 

Surface runoff was the highest contributor to total runoff, and was strongly anti-correlated (R=-0.96, p<0.0001) with θawc, as 

soils with a high soil water capacity can absorb more water before they saturate, leading to lower surface runoff rates (Figure 

S14). 

The marked influence of soil texture on soil hydrology was coupled with a similar influence on simulated vegetation cover 545 

and composition (Figure 12). In the RE-based model, C4 grass LAI mainly varied with soil clay content, leading to a higher 

C4 grass cover on soils that were low in clay content, while woody vegetation LAI was highest for silt-rich soil types (silt, silt 

loam, silty clay loam) and was significantly lower (near zero) over all other soil types (Figure 12, Figure S15). Total vegetation 

LAI had a strong correlation (R=0.95, p<0.0001) with plant-available water capacity θawc and a strong anti-correlation (R=-

0.98, p<0.0001) with the shape parameter b. Both were mainly driven by C4 grass LAI, as woody vegetation cover was overall 550 

low for the RE-based model (Figure S16).  

Comparing both models revealed an overall higher sensitivity to soil texture in the RE-based model than the default model 

(Table 2). The coefficient of variation of evaporation and vegetation cover over all soil textures was higher in the RE-based 

model than the default model for all variables, except for soil evaporation (Table 2). This was also reflected in the ternary 

plots of both variables, which showed an overall higher variation for the RE-based model, as well as more defined (less patchy) 555 

patterns of variation with soil texture (Figure 11, Figure 12). Simulated hydrology components by the new model also had a 

higher range and steeper slope to variations in θawc and b, compared to the default model (Figure S14). For simulated vegetation 

cover this was only the case for total LAI and C4 grass LAI, as woody vegetation LAI was overall lower in the RE-based model 

(Figure S15). Overall, the simulated vegetation differences between the RE-based model and the default model resembled 

those from the reference Dahra simulations shown earlier.  560 

As expected, sandy soil types resulted in the lowest error (RMSE) between simulations and measurements of soil moisture 

from the Dahra site, as evaluated for each soil layer independently (Figure S17). 
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 565 
Figure 11. Simulated sensitivity of evaporation components (columns) to soil texture for both model versions (rows), based 

on the Dahra meteorological drivers. Sensitivities represented by ternary plots of time-series average evaporation component 

values for each soil type. Values are divided by maximum evaporation value over all soil types (Valuemax), calculated for each 

model version and each evaporation component separately. Soil textures found in the Sudan-Sahel region are marked in white. 

 570 

 
Figure 12. Simulated sensitivity of the different dryland PFTs (columns) to soil texture for both model versions (rows), based 

on the Dahra meteorological drivers. Sensitivities represented by ternary plots of time-series average LAI for each soil type. 

Values are  divided by the maximum LAI value over all soil types (LAImax), calculated for each model version and each PFT 

separately. Soil textures found in the Sudan-Sahel region are marked in white. 575 
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Table 2. Mean, standard deviation (SD) and coefficient of variation (CV) of different time-averaged evaporation components 

and vegetation LAI. Statistics calculated over all soil texture combinations, for a site-level simulation based on the Dahra 

meteorological drivers. Units refer to mean and SD, while the coefficient of variation (CV=SD/mean) is unitless. 580 

Model output 
Mean Standard deviation Coefficient of variation 

Default RE Default RE Default RE 

Evap. (mm/y) Evaporation total 295 267 13.9 34.9 0.047 0.131 

 Interception loss 3.47 2.42 0.383 0.872 0.110 0.360 

 Soil evaporation 35.8 62.0 5.84 6.73 0.163 0.109 

 Transpiration 256 202 19.3 39.2 0.075 0.194 

LAI (m2/m2) Total 1.80 1.630 0.088 0.324 0.049 0.198 

 C4 Grass 1.47 1.570 0.088 0.301 0.060 0.192 

 Shrubs 0.08 0.021 0.043 0.047 0.538 2.20 

 Tree Deciduous 0.07 0.003 0.032 0.012 0.415 3.39 

 Tree Evergreen 0.15 0.012 0.038 0.010 0.255 0.812 

 

3.5 Groundwater table depth influence 

Here we show the modelled sensitivity of dryland vegetation to GWTD, for which we used the RE-based model with the 

"aquifer" bottom boundary condition at various depths. Changing the bottom boundary condition to represent an ground water 

layer below the bottom layer already had a large impact on the soil water profile for the default soil depth (150 cm) (Figure 585 

3). Varying groundwater location over a range of depths (75–600 cm) had a large impact on simulated vegetation cover and 

surface hydrology, as total vegetation cover was sensitive to GWTD variations down to 200 cm, while vegetation composition 

became nearly insensitive to GWTD below 350 cm  (Figure 13). Simulated tropical evergreen tree cover was largely impacted 

by this change in water availability, as these deeper-rooted tree PFTs now had access to an unlimited water supply. This PFT 

could photosynthesize and transpire throughout the year, and became the main vegetation cover with an LAI of more than 3 590 

m2/m2 (Figure 13a). This effect became even more pronounced for shallower groundwater depths, increasing evergreen tree 

LAI up to 4.5 m2/m2 for a groundwater depth of 75 cm. On the other hand, for simulations with a deeper groundwater table, 

the evergreen tree LAI declined rapidly with groundwater depth, and C4 grass became the dominant vegetation cover again for 

water table depths below 225 cm (Figure 13a).  

Evaporation components followed this relationship with groundwater depth, and total evaporation was again mainly driven by 595 

transpiration during both seasons (Figure 13b). During the rainy season, total evaporation was invariant (~2.4 mm/day) to 
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GWTD for levels below 200 cm. Plant transpiration accounted for 75% of total evaporation, while the remainder came from 

bare soil evaporation. Rainy season total evaporation increased sharply for shallower GWTD, with an increasing contribution 

by transpiration (up to 90%) due to the higher vegetation cover. During the dry season, all evaporation was due to transpiration, 

as no surface soil water was available for evaporation. Transpiration rates were near zero for GWTD below 250 cm, but again 600 

increased sharply for more shallow groundwater depths, up to rates that matched rainy season transpiration (Figure 13b). 

Surface runoff and lateral flow runoff components were not influenced by groundwater depth, except for baseflow runoff, 

which was negative as water entered the soil through the bottom layer, rather than exiting the soil (Figure 13c). This baseflow 

“runon” component had the same relationship to groundwater depth as transpiration, for both seasons. For groundwater depths 

below 200 cm the baseflow rate varied only little with groundwater depth. However, for more shallow groundwater depths the 605 

baseflow runon rates increased again sharply to compensate for the soil water lost by transpiration (Figure 13c). 

Transpiration during the rainy season mainly occured from the upper soil layers, peaking near the surface and declining down 

to ~50 cm for all simulated groundwater depths. However, during the dry season, transpiration shifted to deeper soil layers, 

peaking between 85–150 cm for all GWTDs deeper than 200 cm, and at more shallow layers for GWTD above 200 cm (Figure 

14). For groundwater depths above 300 cm there was also a peak in transpiration from the bottom soil layer. This peak grew 610 

in importance for more shallow groundwater depths, reaching 25% of all transpiration for simulations where groundwater was 

located more shallow than 150 cm. Note that the values in Figure 14 are not weighted by layer size, and larger layers will 

naturally contribute a higher percentage due to their size (see Figure S18 for a weighted version). 

All of these results can be explained by intersecting the soil water profile with the root distribution over all layers. Soil water 

content increased with layer depth during the dry season (Figure S19), while root distribution decreased (Figure S20), leading 615 

to a local maximum in root water uptake where both functions cross. However, for soil depths of 200 cm and less, an increasing 

amount of root biomass is assigned to the bottom layer in LPJ-GUESS (see Methods). Especially for soil depths more shallow 

than 100 cm, the bottom layer will host the the largest fraction of tree PFT root biomass. Therefore, for shallow soil depths 

(which the model originally was not designed for) this buildup of root biomass in the bottom layer further amplifed the 

contribution to transpiration of this layer, due to its high soil water availability. 620 

Finally, re-evaluating the yearly cycle of soil moisture against site-level measurements showed that introducing a groundwater 

table did not significantly improve the match with observed soil moisture content for the sampled depths at the Dahra site, for 

any of the simulated GWTDs (Figure S21). 
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Figure 13. Influence of groundwater depth on simulated vegetation cover and surface hydrology at the Dahra flux tower site. 625 

Results are averaged over all simulated years (2002–2022) and further separated into the dry and wet season for the surface 

hydrology results. Panels include (a) vegetation cover as given by the LAI of the different PFTs, (b) evaporation components 

and (c) runoff. All results in function of separate simulations of various groundwater depths. 
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Figure 14. Contribution of each soil layer to the simulated total plant transpiration at the Dahra flux tower site, for a selection 630 

of ground water depths, ranging from 75–600 cm (panels). Results are averaged over all simulated years (2002–2022) and 

further separated into the dry and wet season. Results are not weighted by soil layer size. 

4 Discussion 

Based on ecosystem-level evaluations against site-level measurements and regional data products, updating the soil water 

dynamics in LPJ-GUESS resulted in an overall lower bias and higher correlation with observations, although the improvements 635 

were only small overall. This indicates that other factors limit overall ecosystem-level model performance for this region. 

Given the high human population in the Greater Sahel, anthropogenic factors such as land use (change) and animal grazing 

can have a large impact on the ecosystem, yet are not accounted for in the model (Brandt et al., 2017; Lindeskog et al., 2013; 

Souverijns et al., 2020). In our simulations we also did not account for fire, which would further increase the realism of the 

model (Axelsson and Hanan, 2018; Sankaran et al., 2008). For the model evaluation, we only used the “free drainage” boundary 640 

condition with a fixed soil depth for the updated model. As we showed, including a groundwater table and varying soil depth 

can have a large impact on the simulated vegetation and associated fluxes, especially for soil depths shallower than 300 cm. 

Including these boundary conditions, e.g. based on maps of water table depth, may therefore further improve the overall model 

performance without further changes to the soil representation itself. 

The default LPJ-GUESS model already underestimated dry season transpiration and photosynthesis, and this is even more so 645 

for the updated model version, for which these fluxes are nearly zero. This can be explained by the lower simulated tree cover. 

Both tree PFTs were overall strongly reduced in the new model version, causing sharper decline in total transpiration after the 
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rainy season ends, which is now mostly driven by more shallow-rooted grass. The timing of plant transpiration therefore mainly 

follows the surface soil moisture availability, driven by the timing of the rainy season. Nevertheless, we also showed that dry 

season transpiration can be largely influenced by groundwater access in the new model version, simulating values that well 650 

exceed fluxtower measurements when assuming an (unrealistic) shallow water table depth. 

Our results also clarify why the default model version supports evergreen trees in drylands, as the year-round high availability 

of soil water at deeper soil layers (down to -1.4 m) in this model enables these PFTs to stay productive during the dry season. 

However, it is highly questionable whether this simulated soil water availability is realistic, as we showed that a more advanced 

soil percolation scheme does not support such a layer. Nevertheless, even the original percolation function of the default model 655 

would not suggest to support such a layer either. The answer lies in the model code, which contains a condition that percolation 

can only occur during days for which the sum of rainfall and snow melt is higher than 0.1 mm (Nord et al., 2021). This 

condition causes any buildup of deep soil moisture during the wet season to remain in place until the next rainy season, while 

slowly being depleted by evergreen tree transpiration. Our new model version does not contain such a condition and therefore 

does not suffer from this issue. Therefore, the default version of LPJ-GUESS should be used with caution when simulating 660 

vegetation in regions with a highly seasonal climate, especially drylands. 

Despite all this, our RE-based model improved the match with observed soil moisture only for the upper (30 cm) soil layers. 

For the deeper layers the footprint of the rainy season disappears too quickly in both model versions, as both models smooth 

out the changes in soil moisture much sooner than what is found in soil moisture observations. This suggest that the 

pedotransfer functions (e.g. for calculating soil hydraulic conductivity) need to be fine-tuned for this region. These are still 665 

based on the original parameterization of  Cosby et al. (1984) while more advanced versions have become available since then 

(Van Looy et al., 2017; Weber et al., 2024). We suggest that future model developments, of LPJ-GUESS as well as several 

other DVMs that still use the Cosby et al. (1984) parameterizations, take these into account (Meunier et al., 2022). Another 

option would be to use soil hydraulic traits from aggregated trait maps directly, rather than deriving them from aggregated soil 

texture maps (Montzka et al., 2017). Nevertheless, other unaccounted processes can also play a large role in dryland soil 670 

moisture dynamics, such as hydraulic redistribution and water infiltration along roots (Barron-Gafford et al., 2017; Bogie et 

al., 2018; Wang et al., 2023). Our model also simplifies soil representation by assuming vertically homogeneous hydraulic 

properties in each soil column, which can also impact on soil water dynamics. 

Our new developments open up the LPJ-GUESS model for simulating dryland ecohydrology more realistically. The 

percolation scheme based on gradients in water potential improves the model’s soil moisture dynamics, and it is largely based 675 

on physically measurable quantities (Bonan, 2019; Ireson et al., 2023). This scheme also allows water to move upwards against 

gravity, which becomes particularly important when simulating the aquifer bottom boundary condition. The option to simulate 

different soil depths and different bottom boundary conditions gives the model more flexibility. 

This increased flexibility was highlighted by our sensitivity tests. Activating the aquifer bottom boundary condition and 

varying the depth of this layer had a large impact on simulated vegetation cover and surface hydrology. These simulations 680 

suggest that dryland ecosystems like the one we studied here could shift from a groundwater-dependent (bottom supply) to a 
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rainfall dependent (top supply) ecosystem depending on changes in GWTD and root distribution (Fan et al., 2017; Rohde et 

al., 2024). Using the bedrock boundary condition could have a similar effect for ecosystems with higher rainfall and shallow 

soil depth, but we did not make any tests on the potential of this boundary condition. Our sensitivity test on soil texture also 

revealed a higher overall sensitivity of total vegetation cover and C4 grasses to soil texture, especially when the latter is 685 

translated into plant-available water capacity. This further opens up the model to simulate a higher range in dryland plant 

cover, which can also be enhanced by updating the pedotransfer functions (Meunier et al., 2022). Woody plants also had a 

larger year-to-year variability in vegetation cover in our new model version, but their sensitivity to soil texture is obscured by 

to the lower mean woody PFT leaf cover overall. 

From a practical perspective, the new model code is relatively simple and easy to transfer to other branches of the LPJ-GUESS 690 

model, as well as to other vegetation models (Ireson et al., 2023). The model does not need any new parameters to function, 

and is flexible for specifying soil depth and using different bottom boundary conditions. Computing a solution to Richards 

equation is computationally relatively expensive. We did not perform any systematic benchmarks, but from our experience the 

model takes about 5 times longer to run with the new model hydrology. Using the aquifer bottom boundary condition further 

increased this runtime by an additional factor 10, caused by the large gradient in soil moisture that requires shorter (i.e. more) 695 

subdaily timesteps. This also resulted in the larger water mass balance erorr for the aquifer boundary condition. Using a matrix-

based approach to solving Richard’s equations would be a way forward towards increasing the computational efficiency 

(Bonan, 2019). 

The model development that we present here does not solve all challenges of LPJ-GUESS for simulating dryland ecohydrology 

correctly. We identified at least two additional developments that need to be merged with with our model in order to simulate 700 

plant-water dynamics in arid ecosystems realistically. After improving the soil hydrology (LPJ-GUESS-DRY v1.0) the next 

milestone will implement a better representation of plant hydraulics. For dryland ecosystems it is important to have a highly 

resolved representation of drought stress and hydraulic dynamics through the soil-plant-atmosphere continuum (Medlyn et al., 

2016; Xu et al., 2016). Fortunately, a new plant hydraulics scheme was recently developed for LPJ-GUESS, including drought-

induced mortality due to cavitation (Papastefanou et al., 2020, 2024). This model version has been shown to capture drought-705 

induced vegetation mortality in the Amazon much more realistically than the default version (Papastefanou et al., 2024). 

Merging this development with our model version is foreseen in the next update of our model.  

Another ecohydrological limitation for simulating dryland ecosystems with LPJ-GUESS stems from the static root architecture 

in the model, where root biomass is distributed based on an exponential equation (Jackson et al., 1996) and limited to a soil 

depth of 150 cm. However, dryland vegetation is known to have extended root systems and dryland trees are known to develop 710 

a taproot that can access the deep water table (Do et al., 2008; Fan et al., 2017). This allows dryland evergreen trees to sustain 

carbon assimilation and transpiration throughout the dry season (Bowman and Prior, 2005; Nepstad et al., 1994; Oliveira et 

al., 2005; Whitley et al., 2017) as well as hydraulically redistributing water from moist to dry soil layers (Maeght et al., 2013; 

Wang et al., 2023). One of the current hypotheses in the development of deep roots states that dryland trees benefit from 

occasional wet years by using the temporary increase in soil moisture as a window of opportunity to grow roots beyond the 715 
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otherwise ‘dry gap’ in the soil (Holmgren et al., 2013; Wang et al., 2023). The static representation of root architecture and 

root depth prevents ecosystem models such as LPJ-GUESS to simulate these dynamics, eventually underestimating the 

resilience of dryland trees to drought. Indeed, from our sensitivity tests it follows that root architecture can play a large role in 

determining the locations of soil water uptake. The current representation is based on a power law (Jackson et al., 1996) and 

updating it to include dynamic rooting depth, deep taproots or an adaptive root biomass distribution scheme will allow our 720 

model to sustain evergreen dryland trees and dry-season transpiration, even for deep groundwater levels (Do et al., 2008; 

Maeght et al., 2013; Sakschewski et al., 2021).  

Conclusion 

In this work we presented an update to the LPJ-GUESS dynamic global vegetation model, in which we implented a process-

based representation of soil water movement by solving Richard's equation. This development is important for simulating 725 

dryland ecohydrology realistically, as soil water forms the reservoir for plans to take up water from. We showed that this 

update resulted in a generally better match with observations of carbon and water fluxes, although the improvements were 

overall small. We also showed that the updated model is more sensitive to soil texture. Furthermore, the new bottom boundary 

conditions opened up the model to simulate more ecosystem types, such as groundwater-dependent ecosystems. Tree cover 

was overall lower in the new model, in favor of increased grass and shrub cover. We argued that including (1) a better 730 

representation of root architecture, including deep roots, and (2) an improved plant hydraulics scheme, could re-introduce 

simulated dryland trees in the model. Taken together, these developments will allow the LPJ-GUESS model to simulate 

dryland ecohydrology more realistically, enabling the scientific community to better understand and project the future of 

drylands under global change. The work presented in this paper forms the first milestone towards this goal. 

Code and data availability 735 

The RE-based branch of the LPJ-GUESS model can be downloaded from the following open access Zenodo archive: 

https://doi.org/10.5281/zenodo.15024130 (Verbruggen et al., 2025). The default version of the model can be downloaded from 

the following archive: https://zenodo.org/records/8065737 (Nord et al., 2021). Meteorological drivers and evaluation data can 

be obtained from the respective official repositories (Martens et al., 2017; Muñoz-Sabater et al., 2021; Tagesson et al., 2015; 

Wieckowski et al., 2024). 740 

Author contribution 

WV designed the study, implemented the model development, performed the model runs and analysis, and wrote the 

manuscript. DW contributed to model development and revising the manuscript. FM and HV contributed to the soil texture 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

34 

sensitivity studies and revising the manuscript. GS and SH supervised the entire process and contributed to revising the 

manuscript. 745 

Financial support 

WV, SH and GS were supported by the HEIDA project (Reconcilling hydrological and ecological models to understand 

impacts of increasing drought and aridity; Geocenter Denmark, grant 5-2024) and the DRYTIP project (Drought‐induced 

tipping points in ecosystem functioning; Villum Fonden, grant 37465). FM was funded by the FWO as a senior postdoc and 

is thankful to this organisation for its financial support (FWO grant no. 1214723N). DW acknowledges funding from the 750 

European Union’s Horizon Europe research and innovation programme under GreenFeedBack (grant no. 101056921). 

References 

Ahlstrom, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, 

P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: 

The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895–899, 755 

https://doi.org/10.1126/science.aaa1668, 2015. 

Ahnert, K. and Mulansky, M.: Odeint - Solving ordinary differential equations in C++, arXiv:1110.3397 [physics], 1586–

1589, https://doi.org/10.1063/1.3637934, 2011. 

Axelsson, C. R. and Hanan, N. P.: Rates of woody encroachment in African savannas reflect water constraints and fire 

disturbance, Journal of Biogeography, 45, 1209–1218, https://doi.org/10.1111/jbi.13221, 2018. 760 

Barron-Gafford, G. A., Sanchez-Cañete, E. P., Minor, R. L., Hendryx, S. M., Lee, E., Sutter, L. F., Tran, N., Parra, E., Colella, 

T., Murphy, P. C., Hamerlynck, E. P., Kumar, P., and Scott, R. L.: Impacts of hydraulic redistribution on grass–tree competition 

vs facilitation in a semi-arid savanna, New Phytologist, 215, 1451–1461, https://doi.org/10.1111/nph.14693, 2017. 

Baudena, M., Dekker, S. C., Van Bodegom, P. M., Cuesta, B., Higgins, S. I., Lehsten, V., Reick, C. H., Rietkerk, M., Scheiter, 

S., Yin, Z., Zavala, M. A., and Brovkin, V.: Forests, savannas, and grasslands: Bridging the knowledge gap between ecology 765 

and Dynamic Global Vegetation Models, Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, 2015. 

Bogie, N. A., Bayala, R., Diedhiou, I., Conklin, M. H., Fogel, M. L., Dick, R. P., and Ghezzehei, T. A.: Hydraulic 

Redistribution by Native Sahelian Shrubs: Bioirrigation to Resist In-Season Drought, Frontiers in Environmental Science, 6, 

1–12, https://doi.org/10.3389/fenvs.2018.00098, 2018. 

Boke-Olén, N., Lehsten, V., Abdi, A. M., Ardö, J., and Khatir, A. A.: Estimating Grazing Potentials in Sudan Using Daily 770 

Carbon Allocation in Dynamic Vegetation Model, Rangeland Ecology and Management, 71, 792–797, 

https://doi.org/10.1016/j.rama.2018.06.006, 2018. 

Bonan, G.: Climate change and terrestrial ecosystem modeling, Cambridge University Press, 2019. 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

35 

Bowman, D. M. J. S. and Prior, L. D.: Why do evergreen trees dominate the Australian seasonal tropics?, Australian Journal 

of Botany, 53, 379–399, https://doi.org/10.1071/BT05022, 2005. 775 

Brandt, M., Rasmussen, K., Peñuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J. R. B., and Fensholt, R.: 

Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa, Nature Ecology & 

Evolution, 1, 0081, https://doi.org/10.1038/s41559-017-0081, 2017. 

Brandt, M., Wigneron, J. P., Chave, J., Tagesson, T., Penuelas, J., Ciais, P., Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A., 

Rodriguez-Fernandez, N., Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., Tucker, C., Mialon, A., Rasmussen, L. 780 

V., Fan, L., and Fensholt, R.: Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands, 

Nature Ecology and Evolution, 2, 827–835, https://doi.org/10.1038/s41559-018-0530-6, 2018. 

Campbell, G. S.: A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE 

RETENTION DATA, Soil Science, 117, 311, 1974. 

Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative numerical solution for the unsaturated flow 785 

equation, Water Resources Research, 26, 1483–1496, https://doi.org/10.1029/WR026i007p01483, 1990. 

Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A Statistical Exploration of the Relationships of Soil Moisture 

Characteristics to the Physical Properties of Soils, Water Resources Research, 20, 682–690, 

https://doi.org/10.1029/WR020i006p00682, 1984. 

Dashti, H., Pandit, K., Glenn, N. F., Shinneman, D. J., Flerchinger, G. N., Hudak, A. T., de Graaf, M. A., Flores, A., Ustin, S., 790 

Ilangakoon, N., and Fellows, A. W.: Performance of the ecosystem demography model (EDv2.2) in simulating gross primary 

production capacity and activity in a dryland study area, Agricultural and Forest Meteorology, 297, 108270, 

https://doi.org/10.1016/j.agrformet.2020.108270, 2021. 

Do, F. C., Rocheteau, A., Diagne, A. L., Goudiaby, V., Granier, A., and Lhomme, J. P.: Stable annual pattern of water use by 

Acacia tortilis in Sahelian Africa, Tree Physiology, 28, 95–104, https://doi.org/10.1093/treephys/28.1.95, 2008. 795 

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., 

Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., 

Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, 

P.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sensing 

of Environment, 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017. 800 

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant rooting depth, 

Proceedings of the National Academy of Sciences of the United States of America, 114, 10572–10577, 

https://doi.org/10.1073/pnas.1712381114, 2017. 

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., 

Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., 805 

Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, 

P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

36 

Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, 

Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, 

T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, 810 

J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, 

G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K. M., Olsen, A., Omar, A. M., Ono, T., 

Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., 

Rosan, T. M., Schwinger, J., Séférian, R., et al.: Global Carbon Budget 2023, Earth System Science Data, 15, 5301–5369, 

https://doi.org/10.5194/essd-15-5301-2023, 2023. 815 

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance - Hydrological 

evaluation of a dynamic global vegetation model, Journal of Hydrology, 286, 249–270, 

https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004. 

Gilbert, N.: Science enters desert debate, Nature, 477, 262–262, https://doi.org/10.1038/477262a, 2011. 

Grace, J., José, J. S., Meir, P., Miranda, H. S., and Montes, R. A.: Productivity and carbon fluxes of tropical savannas, Journal 820 

of Biogeography, 33, 387–400, https://doi.org/10.1111/j.1365-2699.2005.01448.x, 2006. 

Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.: Triple Collocation-Based Merging of Satellite Soil Moisture 

Retrievals, IEEE Transactions on Geoscience and Remote Sensing, 55, 6780–6792, 

https://doi.org/10.1109/TGRS.2017.2734070, 2017. 

Haverd, V., Ahlström, A., Smith, B., and Canadell, J. G.: Carbon cycle responses of semi-arid ecosystems to positive 825 

asymmetry in rainfall, Global Change Biology, 23, 793–800, https://doi.org/10.1111/gcb.13412, 2017. 

Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., 

De Jesus, J. M., Tamene, L., and Tondoh, J. E.: Mapping soil properties of Africa at 250 m resolution: Random forests 

significantly improve current predictions, PLoS ONE, 10, 1–26, https://doi.org/10.1371/journal.pone.0125814, 2015. 

Hickler, T., Eklundh, L., Seaquist, J. W., Smith, B., Ardö, J., Olsson, L., Sykes, M. T., and Sjöström, M.: Precipitation controls 830 

Sahel greening trend, Geophysical Research Letters, 32, L21415, https://doi.org/10.1029/2005GL024370, 2005. 

Holmgren, M., Hirota, M., Van Nes, E. H., and Scheffer, M.: Effects of interannual climate variability on tropical tree cover, 

Nature Climate Change, 3, 755–758, https://doi.org/10.1038/nclimate1906, 2013. 

Hufkens, K.: appeears: Programmatic interface to the NASA AppEEARS API., , https://doi.org/10.5281/zenodo.8351424, 

2023. 835 

Ireson, A. M., Spiteri, R. J., Clark, M. P., and Mathias, S. A.: A simple, efficient, mass-conservative approach to solving 

Richards’ equation (openRE, v1.0), Geoscientific Model Development, 16, 659–677, https://doi.org/10.5194/gmd-16-659-

2023, 2023. 

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: A global analysis of root 

distributions for terrestrial biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996. 840 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

37 

Karlson, M. and Ostwald, M.: Remote sensing of vegetation in the Sudano-Sahelian zone: A literature review from 1975 to 

2014, Journal of Arid Environments, 124, 257–269, https://doi.org/10.1016/j.jaridenv.2015.08.022, 2016. 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van 

Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, 

M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, 845 

S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, 

F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., 

Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, 

M., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing 

Uncertainty, Journal of Advances in Modeling Earth Systems, 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. 850 

Lehsten, V., Arneth, A., Spessa, A., Thonicke, K., and Moustakas, A.: The effect of fire on tree-grass coexistence in savannas: 

A simulation study, International Journal of Wildland Fire, 25, 137–146, https://doi.org/10.1071/WF14205, 2016. 

Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Implications of accounting for land 

use in simulations of ecosystem carbon cycling in Africa, Earth System Dynamics, 4, 385–407, https://doi.org/10.5194/esd-4-

385-2013, 2013. 855 

Maeght, J. L., Rewald, B., and Pierret, A.: How to study deep roots-and why it matters, Frontiers in Plant Science, 4, 1–14, 

https://doi.org/10.3389/fpls.2013.00299, 2013. 

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. 

A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model 

Development, 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. 860 

Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.: New developments in the effort to model ecosystems under water 

stress, New Phytologist, 212, 5–7, https://doi.org/10.1111/nph.14082, 2016. 

Meunier, F., Verbruggen, W., Verbeeck, H., and Peaucelle, M.: Low sensitivity of three terrestrial biosphere models to soil 

texture over the South American tropics, Geoscientific Model Development, 15, 7573–7591, https://doi.org/10.5194/gmd-15-

7573-2022, 2022. 865 

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A., and Dolman, A. J.: Global land-surface 

evaporation estimated from satellite-based observations, Hydrology and Earth System Sciences, 15, 453–469, 2011. 

Miralles, D. G., Brutsaert, W., Dolman, A. J., and Gash, J. H.: On the Use of the Term “Evapotranspiration,” Water Resources 

Research, 56, https://doi.org/10.1029/2020WR028055, 2020. 

Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and Vereecken, H.: A global data set of soil hydraulic properties and 870 

sub-grid variability of soil water retention and hydraulic conductivity curves, Earth System Science Data, 9, 529–543, 

https://doi.org/10.5194/essd-9-529-2017, 2017. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 

Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

38 

and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth System Science Data, 875 

13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Myneni, R., Knyazikhin, Y., and Park, T.: MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061, 

https://doi.org/10.5067/MODIS/MOD15A2H.061, 2021. 

Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. 

A., Trumbore, S. E., and Vieira, S.: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and 880 

pastures, Nature, 372, 666–669, https://doi.org/10.1038/372666a0, 1994. 

Nord, J., Anthoni, P., Gregor, K., Gustafson, A., Hantson, S., Lindeskog, M., Meyer, B., Miller, P., Nieradzik, L., Olin, S., 

Papastefanou, P., Smith, B., Tang, J., Wårlind, D., and contributors,  and past L.-G.: LPJ-GUESS Release v4.1.1 model code, 

, https://doi.org/10.5281/zenodo.8065737, 2021. 

Oliveira, R. S., Bezerra, L., Davidson, E. A., Pinto, F., Klink, C. A., Nepstad, D. C., and Moreira, A.: Deep root function in 885 

soil water dynamics in cerrado savannas of central Brazil, Functional Ecology, 19, 574–581, https://doi.org/10.1111/j.1365-

2435.2005.01003.x, 2005. 

Papastefanou, P., Zang, C. S., Pugh, T. A. M., Liu, D., Grams, T. E. E., Hickler, T., and Rammig, A.: A Dynamic Model for 

Strategies and Dynamics of Plant Water-Potential Regulation Under Drought Conditions, Frontiers in Plant Science, 11, 1–13, 

https://doi.org/10.3389/fpls.2020.00373, 2020. 890 

Papastefanou, P., Pugh, T. A. M., Buras, A., Fleischer, K., Grams, T. E. E., Hickler, T., Lapola, D., Liu, D., Zang, C. S., and 

Rammig, A.: Simulated sensitivity of the Amazon rainforest to extreme drought, Environ. Res. Lett., 19, 124072, 

https://doi.org/10.1088/1748-9326/ad8f48, 2024. 

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., 

Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution of semi-arid ecosystems to interannual variability of the 895 

global carbon cycle, Nature, 509, 600–603, https://doi.org/10.1038/nature13376, 2014. 

Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: 

Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change, 

in: Terrestrial Ecosystems in a Changing World, vol. 14, Springer Berlin Heidelberg, Berlin, Heidelberg, 175–192, 

https://doi.org/10.1007/978-3-540-32730-1_15, 2007. 900 

Rohde, M. M., Albano, C. M., Huggins, X., Klausmeyer, K. R., Morton, C., Sharman, A., Zaveri, E., Saito, L., Freed, Z., 

Howard, J. K., Job, N., Richter, H., Toderich, K., Rodella, A.-S., Gleeson, T., Huntington, J., Chandanpurkar, H. A., Purdy, 

A. J., Famiglietti, J. S., Singer, M. B., Roberts, D. A., Caylor, K., and Stella, J. C.: Groundwater-dependent ecosystem map 

exposes global dryland protection needs, Nature, 632, 101–107, https://doi.org/10.1038/s41586-024-07702-8, 2024. 

Romano, N. and Santini, A.: 3.3.3 Field, in: Methods of Soil Analysis, John Wiley & Sons, Ltd, 721–738, 905 

https://doi.org/10.2136/sssabookser5.4.c26, 2002. 

Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption 

and its influence on the global water system, Water Resources Research, 44, https://doi.org/10.1029/2007WR006331, 2008. 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

39 

Ruehr, S., Keenan, T. F., Williams, C., Zhou, Y., Lu, X., Bastos, A., Canadell, J. G., Prentice, I. C., Sitch, S., and Terrer, C.: 

Evidence and attribution of the enhanced land carbon sink, Nat Rev Earth Environ, 4, 518–534, 910 

https://doi.org/10.1038/s43017-023-00456-3, 2023. 

Sakschewski, B., von Bloh, W., Drüke, M., Sörensson, A. A., Ruscica, R., Langerwisch, F., Billing, M., Bereswill, S., Hirota, 

M., Oliveira, R. S., Heinke, J., and Thonicke, K.: Variable tree rooting strategies are key for modelling the distribution, 

productivity and evapotranspiration of tropical evergreen forests, Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-

18-4091-2021, 2021. 915 

Sankaran, M., Ratnam, J., and Hanan, N.: Woody cover in African savannas: The role of resources, fire and herbivory, Global 

Ecology and Biogeography, 17, 236–245, https://doi.org/10.1111/j.1466-8238.2007.00360.x, 2008. 

Scheiter, S., Moncrieff, G., Pfeiffer, M., and Higgins, S.: African biomes are most sensitive to changes in CO2 under recent 

and near-future CO2 conditions, Biogeosciences Discussions, 1–37, https://doi.org/10.5194/bg-2019-415, 2019. 

Seaquist, J. W., Hickler, T., Eklundh, L., Ardö, J., and Heumann, B. W.: Disentangling the effects of climate and people on 920 

Sahel vegetation dynamics, Biogeosciences, 6, 469–477, https://doi.org/10.5194/bg-6-469-2009, 2009. 

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., 

Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ 

dynamic global vegetation model, Global Change Biology, 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 

2003. 925 

Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: 

Comparing two contrasting approaches within European climate space, Global Ecology and Biogeography, 10, 621–637, 

https://doi.org/10.1046/j.1466-822X.2001.00256.x, 2001. 

Smith, B., Wärlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling 

and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, 930 

https://doi.org/10.5194/bg-11-2027-2014, 2014. 

Souverijns, N., Buchhorn, M., Horion, S., Fensholt, R., Verbeeck, H., Verbesselt, J., Herold, M., Tsendbazar, N.-E., 

Bernardino, P. N., Somers, B., and Van De Kerchove, R.: Thirty Years of Land Cover and Fraction Cover Changes over the 

Sudano-Sahel Using Landsat Time Series, Remote Sensing, 12, 3817, https://doi.org/10.3390/rs12223817, 2020. 

Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt, I., Holm-935 

Rasmussen, B., Göttsche, F. M., Ridler, M.-E., Olén, N., Lundegard Olsen, J., Ehammer, A., Madsen, M., Olesen, F. S., and 

Ardö, J.: Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental 

variability, Global Change Biology, 21, 250–264, https://doi.org/10.1111/gcb.12734, 2015. 

Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., 

Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias, S., 940 

Zhang, Y., and Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and Perspectives, Reviews of 

Geophysics, 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017. 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

40 

Verbruggen, W., Schurgers, G., Horion, S., Ardö, J., Bernardino, P. N., Cappelaere, B., Demarty, J., Fensholt, R., Kergoat, L., 

Sibret, T., Tagesson, T., and Verbeeck, H.: Contrasting responses of woody and herbaceous vegetation to altered rainfall 

characteristics in the Sahel, Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, 2021a. 945 

Verbruggen, W., Verbeeck, H., Horion, S., Souverijns, N., and Schurgers, G.: Mapping Sahelian Ecosystem Vulnerability to 

Vegetation Collapse: Vegetation Model Optimization, in: 2021 IEEE International Geoscience and Remote Sensing 

Symposium IGARSS, Citation Key: Verbruggen2021b, 1591–1593, https://doi.org/10.1109/IGARSS47720.2021.9554686, 

2021b. 

Verbruggen, W., Schurgers, G., Meunier, F., Verbeeck, H., and Horion, S.: Simulated Tree-Grass Competition in Drylands Is 950 

Modulated by CO2 Fertilization, Earth’s Future, 12, e2023EF004096, https://doi.org/10.1029/2023EF004096, 2024. 

Verbruggen, W., Wårlind, D., Horion, S., Meunier, F., Verbeeck, H., and Schurgers, G.: LPJ-GUESS with soil water 

movement based on Richard’s equation (LPJ-GUESS-RE), , https://doi.org/10.5281/zenodo.15024130, 2025. 

Wang, L., D’Odorico, P., Evans, J. P., Eldridge, D. J., McCabe, M. F., Caylor, K. K., and King, E. G.: Dryland ecohydrology 

and climate change: critical issues and technical advances, Hydrology and Earth System Sciences, 16, 2585–2603, 955 

https://doi.org/10.5194/hess-16-2585-2012, 2012. 

Wang, T., Wu, Z., Wang, P., Wu, T., Zhang, Y., Yin, J., Yu, J., Wang, H., Guan, X., Xu, H., Yan, D., and Yan, D.: Plant-

groundwater interactions in drylands: A review of current research and future perspectives, Agricultural and Forest 

Meteorology, 341, 109636, https://doi.org/10.1016/j.agrformet.2023.109636, 2023. 

Weber, T. K. D., Weihermüller, L., Nemes, A., Bechtold, M., Degré, A., Diamantopoulos, E., Fatichi, S., Filipović, V., Gupta, 960 

S., Hohenbrink, T. L., Hirmas, D. R., Jackisch, C., de Jong van Lier, Q., Koestel, J., Lehmann, P., Marthews, T. R., Minasny, 

B., Pagel, H., van der Ploeg, M., Shojaeezadeh, S. A., Svane, S. F., Szabó, B., Vereecken, H., Verhoef, A., Young, M., Zeng, 

Y., Zhang, Y., and Bonetti, S.: Hydro-pedotransfer functions: a roadmap for future development, Hydrology and Earth System 

Sciences, 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, 2024. 

Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Evans, B., Haverd, V., Li, L., Moore, C., Ryu, Y., 965 

Scheiter, S., Schymanski, S. J., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: Challenges and opportunities in land surface 

modelling of savanna ecosystems, Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, 2017. 

Wieckowski, A., Vestin, P., Ardö, J., Roupsard, O., Ndiaye, O., Diatta, O., Ba, S., Agbohessou, Y., Fensholt, R., Verbruggen, 

W., Gebremedhn, H. H., and Tagesson, T.: Eddy covariance measurements reveal a decreased carbon sequestration strength 

2010–2022 in an African semiarid savanna, Global Change Biology, 30, e17509, https://doi.org/10.1111/gcb.17509, 2024. 970 

Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity in plant hydraulic traits explains seasonal and 

inter-annual variations of vegetation dynamics in seasonally dry tropical forests, New Phytologist, 212, 80–95, 

https://doi.org/10.1111/nph.14009, 2016. 

Zhou, H., Tang, J., Olin, S., and Miller, P. A.: A comprehensive evaluation of hydrological processes in a second-generation 

dynamic vegetation model, Hydrological Processes, 38, e15152, https://doi.org/10.1002/hyp.15152, 2024. 975 

 

https://doi.org/10.5194/egusphere-2025-1259
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.


